skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Laurence-Chasen, J D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Intra-oral food processing, including chewing, is important for safe swallowing and efficient nutrient assimilation across tetrapods. Gape cycles in tetrapod chewing consist of four phases (fast open and -close, and slow open and -close), with processing mainly occurring during slow close. Basal aquatic-feeding vertebrates also process food intraorally, but whether their chew cycles are partitioned into distinct phases, and how rhythmic their chewing is, remains unknown. Here, we show that chew cycles from sharks to salamanders are as rhythmic as those of mammals, and consist of at least three, and often four phases, with phase distinction occasionally lacking during jaw opening. In fishes and aquatic-feeding salamanders, fast open has the most variable duration, more closely resembling mammals than basal amniotes (lepidosaurs). Across ontogenetically or behaviourally mediated terrestrialization, salamanders show a distinct pattern of the second closing phase (near-contact) being faster than the first, with no clear pattern in partitioning of variability across phases. Our results suggest that distinct fast and slow chew cycle phases are ancestral for jawed vertebrates, followed by a complicated evolutionary history of cycle phase durations and jaw velocities across fishes, basal tetrapods and mammals. These results raise new questions about the mechanical and sensorimotor underpinnings of vertebrate food processing. This article is part of the theme issue ‘Food processing and nutritional assimilation in animals’. 
    more » « less